Variational formulation of a damped Dirichlet impulsive problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Approach to Impulsive Differential Equations with Dirichlet Boundary Conditions

We study the existence of n distinct pairs of nontrivial solutions for impulsive differential equations with Dirichlet boundary conditions by using variational methods and critical point theory.

متن کامل

Solution of the Dirichlet Problem with a Variational Method

The objective is to prove that with minimizers of D(u) over H one can solve the Dirichlet problem in Ω. We assume that f satisfies the following property: there exists v ∈ C1(Ω̄) such that v = f on ∂Ω. This is not a restriction to solve the Dirichlet problem with this approach because if f ∈ C(∂Ω) then by the Wierstrass approximation theorem there exist polynomials fk in Rn such that fk|∂Ω conve...

متن کامل

Uncoupled Variational Formulation of a Vector Poisson Problem

{ This Note provides a rigorous analysis for the vector Pois-son problem with the tangential component(s) of the unknown prescribed on the boundary together with the divergence of the unknown speciied on it. This kind of boundary conditions implies a coupling between the Cartesian components of the unknown in two and three dimensions. A new uncoupled variational formulation of the problem is pr...

متن کامل

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

A variational formulation for PDEs

Definition 1. A classic solution (sometimes called strong solution) to the problem is a function u ∈ C2([a, b]) such that it vanishes at the endpoints and pointwise it satisfies the equation −u′′(x)+ u(x) = f(x). Let’s change approach. Suppose that we formally multiply the differential equation by an arbitrary function φ ∈ C1([a, b]) with φ(a) = φ(b) = 0 and we integrate over the interval [a, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2010

ISSN: 0893-9659

DOI: 10.1016/j.aml.2010.04.015